Tag Archives: equal day-night calendar

Solar Calendar in Stonehenge

Gordon Freeman explains how the solar calendar operates as part of Stonehenge. Freeman has written Hidden Stonehenge and Canada’s Stonehenge which outline his archaeological discoveries.

Stonehenge. They’ve been studying Stonehenge for 300 years and in roughly that 300 years a few people have speculated that there is an alignment to the summer solstice sunrise along the axis of the Stonehenge circle. The calendar in Stonehenge goes in and out of favour amongst the experts over there.

Stonehenge. They’ve been studying Stonehenge for 300 years and in roughly that 300 years a few people have speculated that there is an alignment to the summer solstice sunrise along the axis of the Stonehenge circle. The calendar in Stonehenge goes in and out of favour amongst the experts over there.

Around 1900 the experts thought that there is a calendar, a very crude one but still it marked the winter solstice sunset and the summer solstice sunrise. By 1970 the expert archaeologists decided that all of those people didn’t know anything, they were wrong, there’s no calendar there. When we discovered the calendar in the sun temple in Alberta, after we more or less nailed it down here, I heard about the arguments that have been going on for about three hundred years. So I decided to take the techniques that we had evolved here to Stonehenge to have a proper look at it because all the experts had stood in the middle of the Stonehenge circle and looked through the wide gaps between the big stones to see if there could be an alignment there that meant anything.

Well, the lines here in Alberta are accurate to a twentieth of a degree. The experts in in England thought that the old folks 4,000 years ago the best they could do was about one or two degrees so this is wrong by a factor of 20-40.

Well, we went there in December 1995 and began our study. Since then we kept going there til 2010. So anyway to introduce Stonehenge this is an attempt to measure the summer solstice sunrise and we had bad luck as there were spots on the ground and we couldn’t see any sun.

Oh I didn’t say… people were standing in the middle of the circle looking out between these big vertical stones, big gaps. The actual observation place is a barrow 300 meters southwest of the circle, a long way away.

You have to look through a narrow hole in the Stonehenge structure. So some the stones have fallen down so it turns out the narrow hole has to be reconstructed.

Anyway, sunrise 17th of June, 1999. You’re not always lucky because there’s a lot of cloud in England. So anyway this is where the sun rose on the 17 June. To get the horizon is about this level. This is uphill. There were no trees 4000 years ago so you have to extrapolate this on top of the sun back to the horizon. Just to show that you can accurately get the slope, this is three subsequent times after that initial, so this is the slope that you have to extrapolate that point back. So you do that for the 17th of June, you get this, the white dash line, is the horizon before the trees grew. This heavy line is the 17th of June. You have to extrapolate that. The sun moves very regularly so you can, you know how much the rise point changes each day and the spinning axis of the earth processes and so over a thousand years the rise point at the solstices shifts a little bit. 4,000 years ago it shifted by .93 degrees. So to go from 1999 to 4000 years ago, this is four kilo years, thousand years, before the present – that means ago. And extrapolate that down, it comes to this – is the remaining great trilathon stone. The fallen one is right here on the ground. We draw it as if it were standing up and then put on the top – the lintel. This extrapolates down to this point in the gap of the great trilithon. On the ground here is here so that the Sun is rising in a heavy stone window 4 meters above the ground.

And that’s magical. They built this structure. It took genius. I only did that to illustrate that there is a calendar. That’s the one that has been argued over for 300 years and we solved it. It’s a very accurate one, it’s accurate to a tenth of a degree. It’s not quite as accurate as the one here because the stones are big and the gaps are a little bigger. So this is the summer solstice sunrise line that I showed there.

This is an aerial view taken from a postcard and so its high. It goes high past this great trilathon and it goes above the circle at this point, so that’s this sunrise line in summer solstice. And what I’m going to show in some detail is the equal day night sunset line and this equal day night sunrise line.

A kilometer away is this ridge with six what they call bowl barrows on. A lot of these barrows have burials in them but nobody knows whether there are three burials in these or not, but anyway it’s a ridge with six of them 27 28 29 30, over here three more. So the equal day night sunrise I will show you is into the peak of king barrow 28.

Well, first I want to show you the set sunset line. This is a Google Earth image of the circle and then for the sunset you stand on the bank east of the circle and you look through a very narrow gap which I will show you.

There is a notch on one of these trilathon stones that lets the light through. This is standing just outside the circle. This is one of the circle trilathons. There’s another one over here. And this is 25 meters across the circle. This is a trilithon. A trilithon just means three big stones, three stones, two standing vertically – here and then one on top. But there’s a notch that’s been carved out of the side of this one to let the sunlight shine through. With this sun is setting on equal day night. If you move to the east bank where the observer would have stood, this is the tiny slot where the sun has to appear to make the accurate measurement.

So the line is quite accurate but still only about a tenth of a degree. To show you actual results, move the camera inside the circle not too far from that carved chunk out of that rock to show you an equal day night leap year cycle. This is the 25th and 26th of September.

And so the start of the Equal day night was here and the end of it was here coming this way. This is north this is south. Move the camera back a little bit to narrow that gap. We see just a set on the 26th.  In the last two years of the cycle – eight, nine, ten, eleven – this is divided by 4 and these are not, so this is the leap year. And so this is the last two years of the leap year cycle. It ends in September. If you do it in March, it’s going the other way. This is the start of the equal day night in March. So what it takes is the start in March and the end in September. As we move the camera still farther way to narrow the size of that big hole, it’s starting to look like what it would look like from the bank. This is the actual sun coming down here. You can’t see the sun but you can see that this is too light because it was during an actual sunset. But again this is the end of the equal day night in September on the 26th, the beginning of the Equal Day night the 17th of March.

The season focus at Stonehenge for the equal day night sunset starts in March ends in September. That’s the summer, the opposite of the winter focus in Alberta. By the way, their temple is 4400 years old. Ours is 5200 years – the calendar. So ours is actually 800 years older than theirs. That was the sunset line, this is the equal day night sunrise line. From the bank through a narrow gap across the Stonehenge structure to new king barrow 28.

This is standing inside the circle looking along that line just to show you the six of the six barrows on the new king barrow ridge. Look from the circle itself and we wind up focusing on that one.

This is an actual sunrise; the sun on the 25th of September in 2002 appeared here. That’s the sun there but you extrapolate along the slope to where the first flash was – it was here. And the sunrise first flash depends on the elevation of the horizon, so these distances were our flat horizon in Alberta the distances were exactly the same. This distance and when you’re going up slope the distances increase. So this is the beginning of the equal day night for the sunrise and the end of the equal day night the sunset. This is just above the peak of barrow 28. It shows you the same information with September and March. It marks the end of it in September at the beginning of the equal day night in March. So it’s the same as the set it starts in March ends in September. That focuses on the summer. How did they know over here they focused on the winter and over there they focused on the summer.

They just didn’t want.. It is like kids want to separate themselves from their parents to show that they’re individuals and so they disagree with a lot of stuff their parents say. The same thing with people who built these temples.

Anyway so if you’re standing outside the ring looking through a narrow slot, this is the end in September. The beginning of March. This is the peak of new king barrow 28. Now if you go a considerable distance away to see how narrow that gap looks, this is the gap and this is the horizon. It’s quite fine, about a tenth of a degree. Just to give you an idea of the whole Stonehenge calendar as viewed through cracks across the whole Stonehenge structure, this is the equal day night sunrise. This is the equal day night set. It’s the same gap over here but they straddle this stone. Some of these stones are fallen but the stones are accurately placed and so just by turning the diagram around you can estimate the positions of the stones when they all stood up. That’s what these black things are where they used to be. The summer sunrise that I showed you there, this is high up, four meters above the ground, or five. The winter solstice sun set is along the same gaps. This is the narrow gap between the great trilithon two rocks and this is the summer solstice sunset, the winter solstice sunrise and that goes to …they actually go through this chip, this big V that’s been carved out of this big rock.

But there is an altar stone. The books on Stonehenge say that the altar stone has been shifted. It should be perpendicular to this line, but it’s off. It’s only 80 degrees instead of 90 degrees. But it’s exactly in the direction of the winter sunrise and in the summer sunset. The altar stone was intentionally put at that angle to correspond to the solstice rise in the winter and set in the summer.




Solar Calendar in the Sun Temple Near Majorville, Alberta

More than 30 years ago on the remote plains of southern Alberta, Canada, scientist Gordon Freeman discovered a Sun Temple. His study of the site led him to find incredible similarities to Stonehenge. Canada’s Stonehenge not only predates England’s Stonehenge by about 800 years but also predates Egypt’s pyramids. Freeman discovers that 5000 years ago Britons and Plains Indians made precise astronomical observations at these two sites halfway around the world from each other at nearly the same latitude. Here is is explanation of how the calendar works.

More than 30 years ago on the remote plains of southern Alberta, Canada, scientist Gordon Freeman discovered a Sun Temple. His study of the site led him to find incredible similarities to Stonehenge. Canada’s Stonehenge not only predates England’s Stonehenge by about 800 years but also predates Egypt’s pyramids. Freeman discovers that 5000 years ago Britons and Plains Indians made precise astronomical observations at these two sites halfway around the world from each other at nearly the same latitude.

In his 30-year quest to understand these two sites, Gordon Freeman has measured, photographed and made many recordings of Sun rises and sets through the Stonehenge structure. He discovered a complete solar calendar, the same calendar as the 5200-year-old one in Canada. The observer does not stand within Stonehenge Circle, watching the Sun rise and set through the relatively large gaps between the Stones. He stands outside the Circle, observing the dates on which the first and last flashes of the rising and setting Sun cross lines marked by narrow slits that cross the entire stone structure. Freeman finds the artistry of the calendrical construction astonishing.Gordon Freeman was born in 1930 in Hoffer, Saskatchewan and was introduced to Stone Age artefacts at the age of six. His father collected stone projectile points and stone tools from the Saskatchewan prairie after the dry winds had blown away tilled soil.

He obtained an M.A. from the University of Saskatchewan, a Ph.D. from McGill, and a D.Phil. from Oxford. He is a Chemical Physicist, was for ten years Chairman of Physical and Theoretical Chemistry at the University of Alberta, and for thirty years Director of the Radiation Research Centre there. He is now a Professor Emeritus. For forty years he has pioneered interdisciplinary studies in chemistry, physics, and human societies. Interdisciplinarity is now the standard approach to understanding in the sciences and humanities. He has more than 450 publications in chemistry, physics, and other subjects.

As a hobby, he visited many archaeological sites in Canada, the United States, Britain, Ireland, Europe, and Asia. In 1980 he discovered a 5000-year-old Sun Temple in southern Alberta and has studied it ever since. In 1989 he took observation techniques he had developed in Alberta to England, to resolve the controversy that surrounded a possible calendar in Stonehenge. The astonishingly beautiful, ancient calendars in southern Alberta and Stonehenge are displayed for the first time in recent centuries, with far-ranging implications for international prehistory and history.

Most of it is Crown land and it’s been grazing cattle for a hundred years. Previous to that it was grazing buffalo for 10,000 years and this sun temple is 5,000 years old. The most remarkable thing about it is that it has a calendar that is slightly more accurate than the calendar we use – the Gregorian one. So what I’m going to do is to briefly introduce you to the sun temple, show you a few pictures of what the landscape looks like and then show you one of the little parts of the solar calendar. Actually, it contains both a solar and a lunar calendar. I’ll talk about that in a separate talk on the lunar calendar.
So the core of the sun temple it has this enormous 24-square-mile territory with a kind of a spider’s web of strong patterns all throughout it. The core of it is on one square mile in the middle of it and it contains three hills that have been manipulated by the ancient people to be exactly the same height. With the very sensitive GPS, I measure the altitude to be 919 meters above mean sea level, each of the three. The main storm pile is something I call the sun cairn, is on the northeast most hill. Three-quarters of a mile away is a second sun cairn and a little over one mile away – this is looking moving Southwest – is another hill the same height and there’s a cairn on that that has been a back site for summer solstice sunrise for 5200 years.

To give a little better idea of what the top of the main hill looks like – a flying cowboy used to fly me in when the weather was bad or he would throw me in for a few reconnaissance missions where I could photograph various things.

So this is the top of the sun cairn in the main hill, this is a secondary one here and that’s the solstice hill over there. So this is the sun cairn and there’s a ring around it 30 meters in diameter. The sun cairn is 9 meters in diameter. There’s a west house, I call them the v rocks. There’s a north house, there’s a pattern of rocks going down the hill.

This is another view of the same hilltop. The sun cairn and the ring around they call the sun cairn ring. It has a constellation that the stones are exactly a reproduction of the Cepheus constellation and there are the v-rocks over here and here’s the north house.

I’m going to now talk about the calendar and only a small part of the calendar because the calendar has turning points at the winter solstice about December the 21 to 22, summer solstice June 20 to 21. And I had thought initially the equinox because that’s what it says on our calendars, but I couldn’t find any alignments on the dates of the equinoxes that says on the calendar the 20th of March and 22 of September, but we finally found alignments for three days before the March ones – on the 17th of March, St. Paddy’s Day, and the 25th of September, three days away. So this is the real 12-hour, 12.0-hour day, 12.0-hour night. So I’m going to show you an equal day-night sunset line from the sun cairn, actually, it’s the rock beside the sun cairn. The sun cairn is nine meters across the back of it, the back site is only about half a meter across. So going from the sun cairn, two of the of three little cairns 900 meters away.
This is a Google Earth image, the rest are my photographs. This is looking west. That vee of cairns is out here on top of a knoll. Zoom that and you can see a bit more clearly.

There are two little cairns and there’s a white limestone down on the bottom. There are other rocks there but these make a v so that is the foresight. I took photographs of sunsets along this line on the 16, 17, 18th of March. And just to keep his talk a little shorter, this is where the sun set on the last flash of the sun on the 16, on the 17 and the 18th.

Here’s the line from here to the v of cairns of the 17th. The 17th sunset is the equal day-night sunset. Here’s the so-called equinox that got fiddled by Pope Gregory the 13th in 1582 so that everybody could celebrate Easter whether you’re north or south of the Equator on the same date. So we picked the 17th, three days before. The ancient Irish knew that because they still have that heathen drunken brawl on St. Paddy’s Day, in March.

We know that the leap year is every four years. The year is 365.24 days long, so roughly every four years if we have 365 days, 365 days for three years in a row, we have to add a 366th day on the fourth year and then we can shift it back. Most people don’t know whether it is a leap year or most people now don’t know if it’s a leap year or not. Let’s say ten percent of people do. A few people know whether it’s a leap year plus one or leap year plus two. The Indians marked each separate year of the leap year cycle. That’s what I’m going to show you here. This is along the line. This is the small rock that is the real back site. The cairn is right here. In March this is the beginning. This is the beginning in 1988-89. This is the first two years of leap year cycle. This is the beginning of the leap year then 24 hours later that’s the equal day-night rather, then 24 hours later is the end of the equal day-night.

There are no rocks out here to mark the beginning of this cycle. There’s a cairn there and the v point, the big white limestone down here and another little cairn there so the actual top of this little knoll is marked by that cairn and this V rock and those are exactly the end of the equal day-night in the first two years, 1988 and 89, of the leap year cycle. If we went up to 92 and 93 that would be another leap year cycle so they return here every four years.
In September there is the back site again and we were coming in this direction. This is the beginning of the equal day-night and the end of the equal day-night. And it’s the beginning of the equal day-night in September. It was the end of the equal day-night in March. So this picks out a season, a most emphatically marked season, by these equal day-night sunsets that began in September ended in March. Well, that’s the winter, so the focal point of this calendar was the winter season.

I’ll talk about the equal day-night sunrise, yes our equal day-night sunrise. From the very rocks that I mentioned before I’ll show you a bigger image later to the rim of this some ring but actually, there are two other rocks the white limestone a red granite that viewed from here look like they’re making another V. This is 74 meters away. There we got the camera set up so that the front v is nested in the bottom of the back v. There is the sun cairn over there. We zoom in to see it more clearly. I put a camera on top of that red granite so that you can see clearly the front v 74 meters away is nested in the bottom of the back v.
On March the 17, this is the morning of the marked sunset this day, but the sun rose here on the edge.
On the eighteenth of March, the next day, smack in the bottom of the nested vees. On the 19th the next day it has moved through from the bottom up this side so this was picking the sunrise on the 18th. So in September we have the equal day-night starting the 25 – 26 so it starts in the last two years of the leap year cycle. Most emphatically marked season by the sunrise of the equal day-night begins in September ends in March, the same for the sets so the focus is on the winter.

What is Stonehenge?

HiddenStonehengeNews media like to publish theories about what Stonehenge is. Facts seem to be boring. A century ago Stonehenge was said to be a Temple aligned to the Summer Solstice Sun Rise. A decade ago Stonehenge was purported to be a place of healing. The Bluestones are said to have healing properties. In recent years the publicized view is that Stonehenge is a graveyard. The latest press releases say that the Bluestones, transported from Preseli Mountain in southwest Wales, are musical instruments.

Each time a new theory is proposed, all previous theories are trashed by the purveyors of the new one. Individual archaeologists compete for press coverage, and news media like to publicize controversy. So it’s all ME, not WE. Attempts at actual understanding of Stonehenge are sacrificed to the God of Entertainment.



For many centuries up to the mid-twentieth, Christian graveyards were often situated around the local Churches. The Church was the initial sacred place, and that’s why the graveyard was placed there.

The burial mounds around Stonehenge are apparently not older than 5000 years, the age of the initial construction at that sacred place, the Ditch and Bank. There are several possible reasons why that place was initially considered to be sacred, but the reason is not needed for us to be convinced that the place was, and is, considered to be sacred.

Saying that Stonehenge is a graveyard, or that Newgrange in Ireland is a Passage Tomb, is like saying that the graveyard around a Parish Church was the reason that the Church was built at that place, or that Westminster Abby is a Passage Tomb because it contains a few bones.



Faith healing is a phenomenon that crosses cultures. But the Faith comes before the healing. In my 83 years I am aware of many cases of faith healing. I do not understand the energy that generates the effects of mind over physical health. There are many entertaining theories, but I prefer facts to theories. Sacred places are commonly places of healing.



Musical Bluestones from Wales are a fact at Stonehenge. I have rung Bluestone chimes in Carn Menyn on Preseli Mountain myself.  Only a small fraction of the Bluestones ring nicely when struck with a hand-size piece of  Bluestone, but there are hundreds of chime-able Bluestones on the Mountain.

Pipe organs are built in Quebec, and shipped 3000 km to Alberta, to install in churches. So shipping chime-able Bluestones 300 km from Preseli Mountain to Wiltshire Downs 5000 hears ago doesn’t seem strange. Music is spiritual to many people, including me.



Bluestones are extremely hard. Sacred Battle Axes were made from them 5000 years ago. Another reason to move Bluestones to a highly sacred place.



The sky contains many wondrous lights, the Sun, Moon, and stars. Patterns of stars, which we call constellations, change continuously throughout the night. Some of the patterns appear and disappear with the changing seasons of the year. The changing patterns occur in the same way year after year, so they have been used to measure the stages of the year. The changes are the basis of a calendar.

The changes of the constellations with the seasons have sometimes been committed to memory by making up stories about them, myths.

Changes in the positions of the Sun and Moon occur relatively rapidly, and can be measured very accurately.

For the past forty years the majority Professional Opinion has been that Stonehenge does not contain a calendar, beyond that the axis of the Sarsen Circle and Trilithon Horseshoe is aligned to the Summer Solstice Sun rise and the Winter Solstice Sun set. Unfortunately, none of the Profesionals who share this Opinion have ever recorded a measurement of the Sun rise or set along this or any other alignment. Their hand-waving is a lot of fun, and easy to do while seated at a desk.

My book HIDDEN STONEHENGE records on-site measurements of Sun rises AND sets at both the Winter and Summer Solstices, during many years. Attempts to record rises and sets at the Equinoxes failed, but I discovered that Stonehenge contains accurate alignments for the Sun rise and set three days AFTER the September Equinox, and three days BEFORE the March Equinox. I made the amazing discovery that the Equinox as defined in the Oxford English Dictionary, the Merriam-Webster Dictionary, and in all European Dictionaries, is PHYSICALLY IMPOSSIBLE! The true Equalday/nights, when daylight and night are each 12.0 hours long, are March 17-18 and September 25-26.

HIDDEN STONEHENGE tells how the error came about. It’s a long story.

Stonehenge contains a year-round calendar that is slightly MORE ACCURATE than the Gregorian calendar that we use now! — Gordon Freeman

More info can be found in his book. HIDDEN STONEHENGE: Ancient Temple in North America Reveals the Key to Ancient Wonders, published by Watkins, London, 14.99 GBP.

To purchase HIdden Stonehenge

In Britain, the book is available through Watkins.

In the United States and Canada, the book is distributed by Sterling and available online atAmazon

In Australia, the book is available through Simon and Schuster, UK

The Canadian edition can be found at http://canadastonehenge.com